Structure of $\{1-[(2-H y d r o x y p h e n y l) i m i n o m e t h y l \mid n a p h t h a l e n-2-o l a t o-O, O ', N\}-$ piperidinenickel(II)

By Yalcin Elerman
Department of Engineering Physics, Faculty of Sciences, University of Ankara, Besevler, Ankara, Turkey

Erich F. Paulus
Hoechst AG, 623 Frankfurt/Main 80, Germany
and Hartmut Fuess
Strukturforschung, FB Materialwissenschaft Technische Hochschule, 6100 Darmstadt, Germany

(Received 27 March 1990; accepted 19 June 1990)

Abstract

Ni}\left(\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{~N}\right)\left(\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{NO}_{2}\right)\right], \quad M_{r}=405 \cdot 12\), monoclinic, $P 2_{1} / n, a=10.471$ (1), $b=15.524$ (2), $c=$ 12.554 (1) $\AA, \beta=113.07$ (1) ${ }^{\circ}, V=1877.5 \AA^{3}, Z=4$, $F(000)=848, D_{m}=1.43 \mathrm{Mg} \mathrm{m}^{-3}$ (pycnometrically), $D_{x}=1.433 \mathrm{Mg} \mathrm{m}^{-3}, \quad$ Mo $K \alpha=0.7107 \AA, \quad \mu=$ $1.043 \mathrm{~mm}^{-1}, T=293 \mathrm{~K}, R=0.138, w R=0.042$ for 3241 unique diffractometer data $[I>1 \sigma(I)]$. Nickel is in a slightly distorted square-planar environment of two oxygens $[1.804(4)$ and $1.830(4) \AA$] and two nitrogens $[1.848(4)$ and $1.947(4) \AA$] with $\mathrm{O}-\mathrm{Ni}-\mathrm{N}$ angles between $87.6(2)$ and $95 \cdot 1(2)^{\circ} . \mathrm{Ni}$ is $0.033 \AA$ out of the plane of its ligands.

Introduction. Copper(II) and nickel(II) ions react with tridentate anionic Schiff bases, giving dimerized complexes with square planar configurations (Maggio, Pizzino \& Romano, 1974). The same authors report that N-(2-hydroxyphenyl)salicylaldimine reacts with the nickel(II) ion giving a pseudooctahedral complex by polymerization. The purpose of our study is to understand what happens when the nickel(II) ion reacts with both the monodentate ligand piperidine and the tridentate ligand N -(2-hydroxyphenyl)-2-hydroxy-1-naphthaldimine. As an example we took the complex formed by the ligands N-(2-hydroxyphenyl)-2-hydroxy-1-naphthaldimine and piperidine with the nickel(II) ion.

Experimental. Suitable crystals were obtained directly from the synthesis of the compound. A solution of $0.01 \mathrm{~mol} \quad N$-(2-hydroxyphenyl)-2-hydroxy-1-naphthaldimine in 200 ml pure methanol was prepared and 0.6 ml piperidine was slowly added
to the solution, $0.01 \mathrm{~mol} \mathrm{Ni}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} .4 \mathrm{H}_{2} \mathrm{O}$ was dropwise dissolved in 20 ml hot methanol. The mixture of the two solutions was then refluxed for three hours. Red crystals were formed during the reflux operation.
A crystal of dimensions $0.15 \times 0.15 \times 0.08 \mathrm{~mm}$ was sealed in a Lindemann-glass capillary, 25 reflections with $2 \theta>18^{\circ}$ were used for the determination of the cell parameters, one standard reflection ($2 \overline{3} \overline{1}$), no decomposition by X-rays, 4569 measured reflections ($-14 \leq h \leq 1 ; 0 \leq \leq k \leq 20 ;-16 \leq l \leq 16 ; R_{\text {int }}$ $=0.016$) resulted in 3241 unique reflections (of 4823 theoretically possible ones) with intensities $I>\sigma(I)$ which were used for the structure analysis; Nicolet $R 3$ computer-controlled diffractometer, $2 \theta / \theta$ scan, $2 \theta_{\text {max }}=56^{\circ} ; 4^{\circ} \mathrm{min}^{-1}$; no correction for extinction; empirical absorption correction according to the ψ method (Kopfmann \& Huber, 1968; North, Phillips \& Mathews, 1968); $T_{\min }, T_{\max }=0.77,0.87$. The phase problem was solved by direct methods (Sheldrick, 1983); all the non-H atoms were located in the first electron density synthesis (E map). After a few cycles of least-squares refinement the H atoms could be included from a difference electron density synthesis. The parameter refinement was performed by the cascade least-squares method (Sheldrick, 1983), anisotropic atomic displacement parameters of the non- H atoms were refined, least-squares refinement on $|F|, 245$ parameters, $w=1 / \sigma^{2}(|F|)$ based on counting statistics, $R=0 \cdot 138, w R=0.042, S=1 \cdot 38$; max. $\Delta / \sigma=0 \cdot 1$, the ten largest peaks in the final difference electron density synthesis were between 0.74 and $0.33 \mathrm{e} \AA^{-3}$. All calculations and drawings

Table 1. Positional and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$ with e.s.d.'s in parentheses

$U_{\text {eq }}=\left(U_{11}+U_{22}+U_{33}\right) / 3$.				
	x	y	z	$U_{\text {eq }}$
C 01	1.0772 (5)	0.5829 (4)	$0 \cdot 4455$ (5)	0.044 (3)
C 02	1.0511 (6)	0.5733 (4)	0.3262 (5)	0.054 (4)
C03	$1 \cdot 1400$ (5)	0.5190 (4)	$0 \cdot 2956$ (5)	0.063 (4)
C04	$1 \cdot 2498$ (6)	0.4772 (4)	$0 \cdot 3750$ (5)	0.068 (4)
C05	1.2799 (6)	0.4845 (4)	0.4965 (5)	0.060 (4)
C06	$1 \cdot 1929$ (5)	0.5372 (3)	0.5325 (5)	0.048 (3)
C07	1-2270 (6)	0.5432 (4)	0.6524 (5)	0.058 (4)
C08	$1-3368$ (6)	0.4993 (4)	0.7314 (6)	0.071 (4)
C09	1.4205 (6)	0.4472 (4)	0.6956 (6)	0.073 (5)
C10	$1 \cdot 3920$ (6)	0.4405 (4)	0.5796 (6)	0.077 (5)
C11	0.9931 (5)	0.6385 (3)	0.4799 (4)	0.042 (3)
C12	0.8179 (5)	0.7447 (4)	0.4527 (5)	0.042 (3)
C13	0.7152 (6)	0.7879 (4)	0.3596 (5)	0.051 (4)
C14	$0 \cdot 6372$ (6)	0.8506 (4)	0.3852 (5)	0.065 (4)
C15	$0 \cdot 6602$ (6)	$0 \cdot 8700$ (4)	0.4989 (5)	0.066 (4)
C16	0.7591 (6)	0.8257 (4)	$0 \cdot 5885$ (5)	0.063 (4)
C17	0.8407 (6)	0.7633 (4)	$0 \cdot 5667$ (5)	0.055 (4)
C18	$0 \cdot 6950$ (6)	0.6321 (4)	0.0152 (5)	0.076 (5)
C19	$0 \cdot 6431$ (6)	$0 \cdot 6470$ (5)	-0.1148 (5)	0.088 (5)
C20	0.7600 (6)	0.6782 (4)	-0.1464 (4)	0.078 (4)
C21	0.8288 (6)	0.7564 (4)	-0.0774 (5)	0.082 (4)
C22	0.8767 (6)	0.7402 (4)	0.0518 (5)	0.071 (4)
N1	0.8925 (4)	0.6852 (3)	0.4110 (3)	0.043 (2)
N2	0.7648 (5)	0.7079 (3)	0.0851 (4)	0.062 (3)
Nil	0.8301 (1)	$0 \cdot 6897$ (1)	$0 \cdot 2515$ (1)	0.051 (1)
Ol	0.9538 (4)	0.6124 (3)	$0 \cdot 2420$ (3)	0.058 (3)
O2	$0 \cdot 6992$ (4)	0.7677 (3)	$0 \cdot 2518$ (3)	0.059 (2)

were performed on a NOVA $3 / 12$ computer with the SHELXTL programs (Sheldrick, 1983); the scattering factors were taken from International Tables for X-ray Crystallography (1974, Vol. IV, pp. 99, 149). The final atomic positional parameters are given in Table 1, and bond lengths and angles in Table 2.* The difference between R and $w R$ is relatively large, because we took all reflections into account, which were larger than their e.s.d.'s calculated from counting statistics.

Discussion. Fig. 1 shows the structure of the molecule. The monodentate and the tridentate ligands are coordinated to nickel(II). The configuration of the Ni atom is a distorted square plane. The crystal structure consists of discrete molecules (Fig. 2).

In Table 3 the bond lengths of several complexes of N-substituted salicylaldimines are compared with our values. The $\mathrm{Ni}-\mathrm{O}$ distances of 1.830 and $1.804 \AA$ found by us agree with the values in these square-planar coordinated complexes. The $\mathrm{Ni}-\mathrm{N} 1$ bond length of $1.848 \AA$, however, is definitely shorter than $\mathrm{Ni}-\mathrm{N} 2$ and others from the literaure. The

[^0]Table 2. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{C} 01-\mathrm{C02}$	1.422 (8)	$\mathrm{C} 13-\mathrm{O} 2$	1.334 (6)
$\mathrm{C} 01-\mathrm{C} 06$	1.458 (6)	C13-C14	$1 \cdot 388$ (8)
$\mathrm{C} 01-\mathrm{Cll}$	1.416 (8)	C14-C15	1.384 (8)
$\mathrm{C} 02-\mathrm{Ol}$	$1 \cdot 296$ (5)	C15-C16	1.377 (6)
C02-C03	1.415 (8)	C16-C17	1.388 (8)
C03-C04	$1 \cdot 356$ (6)	C 18 - 2	1.478 (7)
C04-C05	1.435 (8)	C18-C19	1.522 (7)
C05-C06	1.424 (8)	C19-C20	1.507 (9)
C05-C10	1.405 (7)	$\mathrm{C} 20-\mathrm{C} 21$	1.501 (7)
C06-C07	1.407 (7)	C21-C22	1.520 (7)
C07-C08	1.370 (7)	$\mathrm{C} 22-\mathrm{N} 2$	1.477 (8)
C08-C09	$1 \cdot 390$ (10)	$\mathrm{N} 1-\mathrm{Nil}$	1.848 (4)
$\mathrm{C} 09-\mathrm{C} 10$	1.370 (9)	N2-Nil	1.947 (4)
$\mathrm{Cl1}-\mathrm{N} 1$	1.292 (5)	$\mathrm{Ni}-\mathrm{O} 2$	1.830 (4)
$\mathrm{C} 12-\mathrm{N} 1$	1.434 (7)	Nil-O1	1.804 (4)
C12-C13	$1 \cdot 410$ (6)	$\mathrm{Ni} 1-\mathrm{O} 2$	1.830 (4)
$\mathrm{C} 22-\mathrm{Cl} 7$	1.386 (7)		
C02-C01-C06	119.9 (5)	$\mathrm{C14-C13-02}$	123.2 (4)
$\mathrm{C} 02-\mathrm{CO}-\mathrm{Cll}$	119.9 (4)	C13-C14-C15	120.7 (4)
$\mathrm{C} 06-\mathrm{CO}-\mathrm{Cll}$	120.1 (5)	C14-C15-C16	120.4 (5)
C01-C02-C03	118.2 (4)	C15-C16-C17	$120 \cdot 7$ (5)
$\mathrm{C} 01-\mathrm{C} 02-\mathrm{O}$	$125 \cdot 2$ (5)	C12-C17-C16	118.6 (4)
$\mathrm{C} 03-\mathrm{C} 02-\mathrm{Ol}$	116.6 (5)	$\mathrm{C} 19-\mathrm{C} 18-\mathrm{N} 2$	113.7 (5)
C02-C03-C04	$122 \cdot 9$ (5)	C18-C19-C20	$110 \cdot 2$ (4)
C03-C04-C05	120.9 (5)	$\mathrm{C} 19-\mathrm{C} 20-\mathrm{C} 21$	111.3 (5)
C04-C05-C06	118.8 (4)	C20-C21-C22	111.4 (4)
$\mathrm{C} 04-\mathrm{C} 05-\mathrm{Cl0}$	121.5 (6)	$\mathrm{C} 21-\mathrm{C} 22-\mathrm{N} 2$	113.1 (4)
$\mathrm{C} 06-\mathrm{C} 05-\mathrm{C} 10$	119.7 (5)	$\mathrm{Cl1-N1-Cl2}$	122.3 (4)
$\mathrm{C} 01-\mathrm{CO6-C05}$	119.2 (5)	$\mathrm{Cl} 1-\mathrm{Nl}-\mathrm{Nil}$	126.6 (4)
C01-C06-C07	$123 \cdot 8$ (5)	$\mathrm{C} 12-\mathrm{N} 1-\mathrm{Ni} 1$	111.1 (3)
C05-C06-C07	116.9 (4)	$\mathrm{C} 18-\mathrm{N} 2-\mathrm{C} 22$	111.4 (4)
C06-C07-C08	122.0 (6)	$\mathrm{C18-N} 2-\mathrm{Nil}$	113.9 (3)
C07-C08-C09	120.8 (6)	C22-N2-Ni1	111.7 (3)
C08-C09-C10	119.0 (5)	$\mathrm{N} 1-\mathrm{Nil}-\mathrm{O} 2$	88.3 (2)
C05-C10-C09	121.6 (6)	$\mathrm{N} 1-\mathrm{Nil}-\mathrm{N} 2$	$173 \cdot 8$ (2)
$\mathrm{C01}-\mathrm{Cl1}-\mathrm{N} 1$	125.4 (5)	$\mathrm{Ni}-\mathrm{Nil}-\mathrm{Ol}$	95.1 (2)
C13-C12-C17	121.5 (5)	N2-Nil-O1	89.1 (2)
$\mathrm{Cl3}-\mathrm{Cl2}-\mathrm{N} 1$	$110 \cdot 6$ (4)	N2-Nil-O2	87.6 (2)
$\mathrm{C} 7-\mathrm{Cl} 2-\mathrm{N} 1$	127.9 (4)	$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{O} 2$	$176 \cdot 6$ (1)
C12-C13-C14	118.0 (5)	$\mathrm{C} 02-\mathrm{Ol}-\mathrm{Nil}$	127.8 (4)
$\mathrm{Cl} 2-\mathrm{Cl} 3-\mathrm{O} 2$	118.7 (5)	C13-O2-Nil	111.2 (3)

Fig. 1. Molecular structure, showing 30% probability thermal ellipsoids for the non-H atoms and the atom-numbering scheme.
reason for this is that the two oxygens, coordinated to the Ni atom, are drawing the whole ligand and therefore also the N atom towards the Ni atom.

Fig. 2. View of the crystal structure, viewed parallel to the z axis.
An inquiry of the Cambridge Structural Database (1989) for octahedrally coordinated $\mathrm{Ni}^{1 \mathrm{I}}$ ions resulted in 104 compounds with $\mathrm{Ni}-\mathrm{O}$ and/or $\mathrm{Ni}-\mathrm{N}$ bonds. The average $\mathrm{Ni}-\mathrm{O}$ and $\mathrm{Ni}-\mathrm{N}$ distances are 2.084 and $2 \cdot 110 \AA$, respectively. They are significantly longer than in the square-planar configuration.

The coordination of the ligands around the Ni atom is fairly planar, and the bonding angles of the ligands are between 87.6 and $95 \cdot 1^{\circ}$. The Ni atom is $0.033 \AA$ out of the plane of its ligands. The angles between the planar organic groups are smaller than 8°. The Ni atom deviates from these planes by less than $0 \cdot 165 \AA$.

The piperidine ring has an almost ideal chair conformation: the perpendicular distances of the two

Table 3. Bond lengths (\AA) in some nickel(II) complexes

	(I)		(II)	(III)	(IV)
$\mathrm{C} 01-\mathrm{C} 02$	1.402 (6)	1.401 (7)	1.397 (5)	1.427 (6)	1.422 (8)
C01-C11	1.430 (5)	1.429 (4)	1.429 (4)	1.446 (6)	1.416 (8)
$\mathrm{C} 02-\mathrm{Ol}$	1.323 (5)	1.318 (5)	1.305 (4)	1.332 (5)	1.296 (5)
$\mathrm{C} 11-\mathrm{N} 1$	1.298 (5)	$1 \cdot 302(5)$	$1 \cdot 297$ (4)	1.279 (6)	1.292 (5)
C12-C13					1.410 (6)
$\mathrm{C} 12-\mathrm{N} 1$					1.434 (7)
$\mathrm{C} 13-\mathrm{O} 2$					1.334 (6)
$\mathrm{Nil}-\mathrm{N} 1$	1.913 (4)	$1 \cdot 918$ (4)	$1 \cdot 912$ (3)	1.941 (3)	1.848 (4)
$\mathrm{Nil}-\mathrm{N} 2$					1.947 (4)
$\mathrm{Nil}-\mathrm{Ol}$	1.829 (2)	1.828 (2)	1.832 (2)	1.828 (3)	1.804 (4)
$\mathrm{Nil}-\mathrm{O} 2$					1.830 (4)

(I) $\operatorname{Bis}\{N$-[(1,3-dioxolan-2-yl)methyl]salicylaldiminato $\}$ nickel(II); (II) bis $\{N$-[(1,3-dioxolan-2-yl)methyl]-2-hydroxy-1-naphthaldiminato\}nickel(II); (III) bis\{ N-[(1,3-dioxolan-2-yl)methyl]-3-hydroxy-2-naphthaldiminato\}nickel(II) (Fernandes-G., Rosales-Hoz, Rubio-Arroyo, Salcedo, Toscano \& Vela, 1987); (IV) present work.
para positioned chair atoms from the plane of the other four atoms of the six-membered ring are between 0.608 and $0.650 \AA$. The ideal theoretical value is $0.726 \AA$.

References

Cambridge Structural Database (1989). Users Manual. Cambridge Crystallographic Data Centre, Cambridge, England.
Fernandez-G., J. M., Rosales-Hoz, M. J., Rubio-Arroyo, M. F., Salcedo, R., Toscano, R. A. \& Vela, A. (1987). Inorg. Chem. 26, 349-357.
Kopfmann, G. \& Huber, R. (1968). Acta Cryst. A24, 348-351.
Maggio, F., Pizzino, T. \& Romano, V. (1974). Inorg. Nucl. Chem. Lett. 10, 1005-1008.
North, A. C. T., Philips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheldrick, G. M. (1983). SHELXTL Users Manual. Revision 4. Nicolet XRD Corporation, Madison, Wisconsin, USA.

Structure of
 μ-Pyrazine-bis[(diethylenetriamine- $\left.N, N^{\prime}, N^{\prime \prime}\right)($ diperchlorato- O)copper(II)]

By Duanjun Xu, Chenggang Chen, Yuanzhi Xu and Chaorong Cheng
Department of Chemistry, Zhejiang University, Hangzhou, People's Republic of China
and Jie Chen and Weizhong Tang
Shanghai Institute of Biochemistry, Academia Sinica, People's Republic of China

(Received 22 March 1990; accepted 20 June 1990)

[^0]: * Lists of structure factors, anisotropic atomic displacements parameters, H -atom coordinates and bond lengths and angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53303 (32 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

